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Motivation

• “The main focus of the workshop will be the 
analysis of image or image-like data with a view 
to the rigorous analysis of data from scientific 
experiments.”

– Estimation of Motion

– Resolution Enhancement

– Edge Detection
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Topic I: Motion Estimation
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Motion Estimation: 
Where are we?

“After some 20 years work on motion estimation, I think we know what we’re doing”
-David Fleet (PARC)
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Motion Estimation: A Model

• Signal Model
),(),(),(

),(),(),(

22

11

yxnvyvxfyxf
yxnyxfyxf

yx +−−=
+=



Milanfar et al. EE Dept, UCSC

Statistical Solution: 
Maximum Likelihood

• Correlation methods

• Nonlinear Least Square:

• Improving to subpixel acuracy:

– Fits a quadratic about the peak of the correlation surface.
– Gauss-Newton methods, iterated improvement, 

• iterating over scale: pyramid-based methods
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The Optical Flow Method

• Optical Flow Equation (Linear Least Squares)
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Performance Limits

• Fisher Information Matrix (Assume GWN)

• Bound on the mean-squared error
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How close to the limit?
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What happens at high SNR?

Bias!
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Performance vs Image content
Sqrt of Trace of J 
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• Don’t need very high frequencies
• OK to presmooth noisy images
• What is the “optimum” image content?
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Can the limitations be overcome?

Image Sequence One Block

°90 Pixel Sum

°0 Pixel Sum (projection)
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Qualitative Comparison

• Performance:
– In most cases, performance of 2-D and 1-D methods are within 

5% of each other (mean magnitude or angular error)

• Complexity: 
– Projection-based an order of magnitude faster

• Surprising fact: 
– Projection can improve performance.
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Quantitative Comparison
Mean angular error vs. SNR Mean magnitude err. vs. SNR

1-D Method better at low SNRs
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Why Improvement?

• Interference Rejection

+ =

Moving Still or known motion

“Same” row/column projections

Sum
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Why Improvement?

• 2-D Spectrum vs. 1-D Spectrum
– Projection - Slice Theorem:

• f ! 2-D Fourier Transform ! Slice @ angle
• f ! Projection sum at ! 1-D Fourier Trans.

θ
θ

• Smoothness
– Radon transform of f is ½ degree smoother 

than f.
• Reduced Bias
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Optimal Projection Angles

• Goal: Find the set of projection angles that minimizes 
mean-square error.

• Partial solution: Find a pair of orthogonal directions where 
the product of “power” in the derivative of projections is 
largest. (What about the bias?)

1θ

2θ
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Topic I: Summary

• Limits to how well motion can be 
estimated. 
–Existing methods should be measure against 

these limits.
• Bias-variance tradeoff in motion estimation. 

What is best?
–Bias is hard to characterize

• What are “best” image patterns for motion 
estimation? 
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Topic II: Resolution Enhancement
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Why Resolution Enhancement?

• To obtain an alias-free, “diffraction limited” 
image we need 4 pixels covering the Airy 
disk:

• That is: radius of the Airy disk must match 
the pixel dimensions.
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Resolution Enhancement Idea
• Given multiple low-resolution movingmoving images of 

a scene (a video), generate a high resolution 
image (or video).
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• A simple model relating the low-resolution blurry 
image to the high resolution crisper image.
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“PSF”

Resolution Enhancement Model
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Low vs High Res Pixels

x2 enhancement
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The Mathematical Model

• The system is typically underdetermined and ill-conditioned.
• 10’s or 100’s of thousands of unknown variables and data.
• Warping (motion), must be estimated!
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Some real examples:

Infrared Camera  (Night Vision)
Data Courtesy Wright Labs USAF
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License Plate Reading

Digital Video Camera from 2nd story window
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Before
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After
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Detail Before

Data Courtesy  Vigilant Technology
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Detail After

Data Courtesy  Vigilant Technology
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MPEG Surveillance Video

Data Courtesy  Vigilant Technology
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What are the limits to 
enhancement? 

• Motion Estimation Accuracy 

• Model Accuracy

• Sensor Noise

• Rayleigh Limit?
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A Case Study

• Incoherent imaging of two closely-spaced 
point sources

• Statistical definition of resolution: the 
ability of the imaging system to distinguish 
two hypotheses in the presence of additive 
noise.
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Slit Aperture Imaging
• The image of an ideal point source is captured 

as a spatially extended pattern (point spread 
function or PSF)
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• The image of two sources is the incoherent sum 
of PSFs, representing the effect of the diffraction

Incoherent Imaging
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Incoherent Imaging
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The Rayleigh ”Limit”

"According to Rayleigh criterion these two 
point sources are not resolvable when d<1. 

"Rule of thumb, not physical law

"Depending on the signal-to-noise ratio (SNR), 
resolution beyond the Rayleigh limit is indeed 
possible. (“super-resolution”).

"But this has its limits too.  
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A Statistical Definition of Resolution
# The question of presence of one 

peak (d=0) or two peaks (0<d<1) can 
be formulated in statistical terms by 
defining two hypotheses: 
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Resolution = Discrimination with 
Unknown Parameters

• This is a (nonlinear) problem of signal 
discrimination with unknown parameter.

• The problem of interest revolves around 
the values of d in the range 0<d<1. We 
can develop locally optimal statistical tests 
(discriminators). 
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Definition of Resolution Limit

Question: Minimum “d” detectable at very 
high probability of detection (Pd=0.99)
and very low false alarm rate (Pf=0.001)
at a given SNR.
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Minimum Detectable “d” vs. SNR
(equal power)
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General Case α≠β
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An explanation and some insight

" For a given dmin, lower SNR is needed for 
the case β≠α as compared to the case β=α.

" Does the information content of the estimate 
of d behave this way? 
" Yes. 
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CRLB Curves for d
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CRLB Curves for d
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Topic II:Summary

# Two factors play key roles in determining 
resolution beyond the Rayleigh limit 
# SNR per sample
# Sampling Rate

# We can address the question of resolution 
in the context of information theory.

# Extensions to the full resolution 
enhancement problem, including motion 
uncertainty, remain to be studied.
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Achievable accuracy in edge 
localization

“On achievable accuracy in edge localization” Kakarala and Hero, T. PAMI 14:7, 1992
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Achievable accuracy in edge 
localization

TI
llE s

2

2
2 ])ˆ[( σπσ≥−

Canny 



Milanfar et al. EE Dept, UCSC

Overall Conclusions
• Fundamental performance limits in imaging are 

important to our understanding, and can help stop 
bickering.

• By understanding these limits, we optimize our 
algorithms accordingly. 

• The propagation of these uncertainties from low to 
high level tasks is a challenge. 

• Need to view image processing with increased 
awareness of notion of information.
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